Conservation Plan

ROYAL BANK TOWER
675 WEST HASTINGS STREET, VANCOUVER, BC

CONSERVATION PLAN
JUNE 2016

DONALD LUXTON
AND ASSOCIATES INC.
TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. HISTORIC CONTEXT .. 2
3. STATEMENT OF SIGNIFICANCE ... 13
4. CONSERVATION GUIDELINES ... 15
 4.1 Standards and Guidelines ... 15
 4.2 Conservation References ... 16
 4.3 General Conservation Strategy .. 17
 4.4 Sustainability Strategy ... 17
 4.5 Alternate Compliance .. 18
 4.6 Site Protection & Stabilization ... 18
5. CONSERVATION RECOMMENDATIONS .. 19
 5.1 Site ... 19
 5.2 Form, Scale, and Massing .. 19
 5.3 Exterior Walls ... 19
 5.3.1 Andesite ... 21
 5.3.2 Granodiorite Base ... 22
 5.3.3 Buff Brick ... 24
 5.3.4 Parapets ... 26
 5.3.5 Balustrades ... 26
 5.4 Fenestrations .. 27
 5.4.1 Windows ... 27
 5.4.2 Doors ... 29
 5.5 Architectural Metal Works ... 30
 5.6 Colour Schedule .. 30
6. MAINTENANCE PLAN ... 31
 6.1 Maintenance Guidelines ... 31
 6.2 Permitting ... 31
 6.3 Routine, Cyclical and Non-Destructive Cleaning .. 31
 6.4 Repairs and Replacement of Deteriorated Materials ... 32
 6.5 Inspections .. 32
 6.6 Information File .. 32
 6.7 Exterior Maintenance .. 33
APPENDIX A: RESEARCH SUMMARY ... 36

Left: Vancouver Sun, January 20, 1930, Page 1
1.0 INTRODUCTION

The Royal Bank Tower, located at 675 West Hastings Street, is an "A" listed building on the municipal heritage register. The modernist skyscraper was constructed between 1929 and 1931, characterized by an Art Deco-inspired massing with a stepped tower, detailed in neo-Romanesque elements. The building is clad in local Haddington Island andesite stone; granodiorite base; decorative stone window and portico surrounds; and a combination of new aluminum window sashes with extant original wood window frames above the entablature, and original windows in metal and wood at the base levels. At the base level of the Royal Bank Tower is the monumental banking hall, characterized by an arcade of round-arched double-height windows along Granville Street, and a grand-arched banking hall portico along West Hastings Street.

The proposed conservation strategy for the Royal Bank Tower includes the preservation and rehabilitation of the character-defining elements along the West, South, and North Elevations. It also includes the rehabilitation of the East Elevation by physically attaching the historic building to a new building, with the masonry wall being integrated as an interior wall that would face a new indoor courtyard. This intervention would also allow for the seismic upgrade of the historic building as part of the new construction.

This Conservation Plan is based on Parks Canada’s Standard and Guidelines for the Conservation of Historic Places in Canada. It outlines the preservation, rehabilitation and restoration that will occur as part of the proposed redevelopment.

2.0 HISTORIC CONTEXT

The Royal Bank Tower, located at 675 West Hastings Street in downtown Vancouver, was completed in 1931. Opening as the Great Depression arrested the economy, the tower stands today as a symbol of the optimistic growth of the late 1920s, which was cut short by a stock market crash so devastating it gripped the world for a decade.

THE ROYAL BANK OF CANADA

Excerpt from Quick to the Frontier: Canada’s Royal Bank [McDowall, Duncan, 1994]

Frederick T. Walker was a young banker with a mission on the West Coast. Like so many of his fellow employees, he was a Maritime “boy,” Moncton born and bred, caught up in the floodtide of Canadian bank expansion at the turn of the century. In 1890, at age fifteen, he had joined the Merchants’ Bank of Halifax, an upstart Maritime bank just entering its third decade of operation, as a clerk for the paltry salary of $75 a year. Within a decade he found himself in Vancouver, where the Merchants was eagerly attempting to tap into the mineral, forest, and fishery wealth of the burgeoning British Columbia economy. By 1904, Walker was earning $2,000 a year as assistant manager in Vancouver and, three years later, he was manager, earning $3,000. Walker’s growing stature reflected that of his bank; in 1901 it had shed its original Maritime title and had adopted a more cosmopolitan identity as The Royal Bank of Canada. In 1907, form followed style as the Royal moved its head office from Halifax to Montreal’s bustling St. James Street, Canada’s undisputed financial capital.

In the summer of 1907, Montreal had a special assignment for its man in Vancouver. Success in Canadian banking came to those who anticipated national growth and were there to meet it. The Royal’s initial plunge into British Columbia in the late 1890s had conformed to this pattern of frontier-mindedness; branches were frantically established in mining boom towns such as Rossland and Atlin. So great had been the haste in the gold-rush town of Bennett Lake that the bank had made the mid-winter purchase of a lot, only to discover in the warmth of spring that their prize location was in fact a piece of frozen lake. Despite such folly, aggressive expansion paid handsomely. By 1907, the Royal had a profitable network of twenty branches throughout the province. Elsewhere in
Canada, sixty-four branches bore the Royal name, companions to a small chain of foreign branches in Cuba, New York, Puerto Rico, and Newfoundland.

The key to frontier banking was to beat the competition to these outposts of development; careful scouting and decisive commitment were essential. Such was the case in August 1907, when the directors in Montreal approved plans to open in the as-yet-unincorporated timber town of Alberni on the Pacific coast of Vancouver Island. Caught in the grip of real-estate fever, Alberni beckoned to eastern bankers. To this date, its banking needs had been provided at distance from Victoria and Nanaimo. The task of seizing the opportunity fell to Walker. Stealth would be the key to the operation.

Walker was instructed to “proceed to Alberni in the most secret manner and engage premises.” So as not to attract suspicion, Walker brought his wife along on the expedition; tourists, not bankers, travelled with their wives. In Victoria, the couple boarded the CPR coastal steamer Tees and sailed north. As the ship lurched through the heavy Pacific swells, Walker succumbed to seasickness. He spent the entire journey “reclining on a pile of lumber and hoping the ship would sink.” Only once the Tees had gained the more tranquil waters of the Alberni Canal could Walker turn his thoughts to the task at hand. Docking at midnight, he took a room in the local hotel, only to be roused early the next morning by the arrival of a coded cable from his supervisor in Vancouver. Rumours had reached the Vancouver branch that a rival bank, probably the Commerce, was launching its own bid for Alberni’s business. Time was now of the essence.

Armed with “a very moderate sum in cash,” Walker set to work. Within two hours of the telegram’s arrival, he secured rented space in a dilapidated building on the main street, bought a selection of pens, ink, and paper suitable for passbooks, and prevailed on the local undertaker to prepare a cloth banner announcing the “Temporary Office - Royal Bank of Canada.” At ten o’clock sharp, the
branch opened for business. Almost immediately, a customer - the publisher of the Alberni Pioneer News - appeared, deposited “nearly $2,000,” and was issued a makeshift passbook. Throughout the day, Walker stood to his job and “did almost every form of banking business, including even the sale of drafts.” At day’s end, lacking a safe, he locked up his deposits in the local dry-goods store and retired to the hotel, where he bought a round of drinks for all and sundry.

The next morning’s overland stage from Nanaimo brought representatives of the competition, who, upon seeing the Royal well established in Alberni, abandoned their plans and retreated on the afternoon stage. A day later, reinforcements arrived from Vancouver in the form of a regular manager, a clerk, and a crate of banking supplies. Thus The Royal Bank of Canada came to Alberni. Frederick Walker’s expedition up the Pacific coast is remarkable in two respects. In the first place, the Royal’s arrival in Alberni, like the arrival of its rival banks in numerous other frontier towns, vividly demonstrated that, by the turn of the twentieth century, Canada had coast-to-coast banking, a national financial system that was able not only to keep pace with but also to facilitate national development. In the first four decades of Confederation, Canadians had displayed particular genius in devising a banking system that was not inextricably tied to the regional components of the national economy. It was a system that had borrowed the best characteristics of Scottish branch banking and American bank methods and had applied them to the exigencies of a young, sprawling nation, thinly populated and dynamically expanding. Despite periodic bank failures, it was a system that bred growth and stability through trust in its integrity. What could speak louder to this fact than the willingness of an Alberni citizen to entrust his deposits in the local dry-goods store and retire to the hotel, where he bought a round of drinks for all and sundry.

F.T. Walker’s progression from Moncton to Alberni is illustrative of a second crucial aspect of Canadian banking at the turn of the century: banking institutions were national employers at a time when the vast majority of Canadians spent their entire working life tied to unending local employment or, if they were transient, a succession of small employers. For innumerable young men from small-town Canada, banking was a step up into the urban, professional, middle class. It furnished stable yet mobile employment. Pay was often poor and working conditions arduous, but for the determined young banker, a career with a bank opened up professional vistas largely unknown in the nineteenth century.

Walker was a superb example of a “bank boy” on the move. Vancouver was not his ultimate resting place. In 1912, he became manager in Montreal, at the Royal’s flagship branch. Five years later, he was appointed agent in the bank’s pivotal New York office. After the First World War, he husbanded himself cruising the coast of South America, seeking banking opportunities in Latin American trade. Just as he had in Alberni, Walker supervised the Royal’s establishment in Rio de Janeiro, Buenos Aires, and innumerable Caribbean islands. His yearly salary on retirement in 1937 was well in excess of $20,000. He had grown with the bank. When Walker had become a lowly clerk in 1890, the Merchants’ employed fewer than 200 men. By 1907, he was one of 629, and by his retirement there were 6,877 Royal Bankers spread throughout Canada, the United States, Europe, the Caribbean, and Latin America.

As the bank became the nation’s largest in the 1920s, the organization was in a position to build a prominent new home on Hastings Street. The new tower would symbolize the powerful bank and become a beacon of hope, even as the tower’s construction progressed at the onset of the Great Depression. The team assembled to construct Vancouver’s Royal Bank Tower already had strong working relationships, as their partnerships date to the Royal Bank’s foray into the West Indies earlier in the twentieth century. The Royal Bank utilized the services of consulting engineers Purdy & Henderson to oversee the construction of their branches in the region. One of the employees of Purdy & Henderson, S.G. Davenport, was stationed in Havana and later became the Chief Architect for the Royal Bank. These team members, including S.G. Davenport and Purdy & Henderson would go on to design and engineer the tower on West Hastings.

ARCHITECT

Summer Godfrey Davenport (1877-1956) was the Chief Architect for the Royal Bank of Canada from 1920 until 1942, and was responsible for the design of numerous branches across Canada. Born in Framingham, Massachusetts, he graduated from Harvard University in 1901 and then joined the Boston offices of Cram, Goodhue & Ferguson as an assistant until 1905. He then moved to New York to work for Eidlitz & McKenzie, followed by McKenzie, Voorhees & Gmelin. Davenport then joined Purdy & Henderson in New York and was sent by the company to supervise the construction of several projects in the West Indies, including the head office of the Royal Bank of Canada in Havana, which dates to 1917. In February 1920, he joined the staff of the Havana office of the Royal Bank and was appointed Chief Architect for the company in July of that year. His most substantial project for the bank was the Royal Bank Tower in Vancouver, a stepped neo-Romanesque palace with a striking, arcaded banking hall that borrows heavily from the design of the Royal Bank Headquarters in Montreal (illustrated on page 3), which was a collaboration between Davenport and York & Sawyer of New York. He resigned as Chief Architect for the bank in 1942 but was called back in 1945 to act as design consultant on several postwar branches for the company. Davenport died in Georgieville, Quebec on March 7, 1956.

CONSULTING ENGINEER: PURDY & HENDERSON

Corydon Purdy, no date
They opened branch offices in various locations, including Havana, Cuba, where the Royal Bank commissioned the firm to oversee the expansion of bank facilities in the West Indies. Purdy’s firm was well respected and his involvement in the design of skyscrapers was known to be more extensive than anyone else during his storied career. He is also credited with establishing the role of the consulting engineer as a critical team member in skyscraper construction projects. Based on their partnership in the West Indies and Purdy’s stellar reputation, the Royal Bank’s selection of Purdy & Henderson as consulting engineers for their new skyscraper in Vancouver was a natural fit. Two of Purdy & Henderson’s most famous projects are illustrated below.

CONSTRUCTION DETAILS
The Royal Bank Tower was constructed between 1929 and 1931 at a listed cost of $1.75 million (1930 dollars). Most of the materials (approximately 90%) for the tower were sourced within the province. Royal Bank selected the Vancouver-based contracting firm of Carter-Halls-Aldinger to oversee construction. The firm’s other notable commissions included Vancouver City Hall, the Georgia Medical-Dental Building (now demolished) and a wing of the Empress Hotel in Victoria. The subcontractors involved in the construction included other Vancouver companies, such as Bogardus, Wickens Limited (plate glass), Western Steel Products Limited (hollow metal window frames, sheet metal, roofing), Dominion Bridge (steel framework) and Peterson & Cowan Elevator Co.
Construction sequence of Royal Bank Tower, 1930, VPL 12077, 12078, 12079.

Construction sequence of Royal Bank Tower, 1930, VPL 12077, 12078, 12079.
3.0 STATEMENT OF SIGNIFICANCE

ROYAL BANK TOWER

Description of the Historic Place
The Royal Bank Tower is an eighteen-storey office building located at 675 West Hastings Street in downtown Vancouver. The Art Deco-inspired massing of the tower steps back as it rises, and is detailed with neo-Romanesque elements.

Heritage Value of the Historic Place
The Royal Bank Tower is valued for: its illustration of the westward progression of the central business district in downtown Vancouver; as the local Royal Bank Headquarters from 1931-1973 and as a branch of the Royal Bank to the present day; its design by architect for the Royal Bank, S.G. Davenport; its structural design by consulting engineers Purdy & Henderson; and as a significant local construction project undertaken during the Depression, as overseen by contractors Catter-Halle-Aldinger.

Completed in 1931, the Royal Bank Tower reflects the westward movement of Vancouver's downtown core. Originally centred around Gastown, Vancouver's commercial core began migrating west as the city expanded and companies grew throughout the Edwardian era; when the Royal Bank acquired this prime site, it was the most valuable piece of property in the city. Businesses began to naturally progress west to underdeveloped sites on one of Vancouver's primary streets, Hastings Street, especially as financial institutions constructed their new regional head offices along the corridor. A second westward push occurred through the interwar era, as exemplified by the construction of the Royal Bank Tower on the prominent corner of West Hastings and Granville Streets. The tower was an anchor in Vancouver's financial district, of West Hastings and Granville Streets. The tower is also valued for its association with the Royal Bank of Canada. The building replaced the bank's former British Columbia headquarters at 400 West Hastings Street, demonstrating the company's desire to project a dominant and secure corporate image. The Royal Bank, which had emerged in the 1920s as Canada's largest bank, was first among its peers in Vancouver to express its power through the construction of a skyscraper. The bank's regional offices were located in the tower for more than four decades, until they moved to the new Royal Centre development in 1973. The Royal Bank branch on the main and lower floors of the tower has remained in place since opening in 1931 and represents the company's enduring relationship with the site.

The Royal Bank Tower is significant for its modernistic skyscraper design by S.G. Davenport, chief architect for the Royal Bank of Canada from 1930 until 1942. The tower echoes the traditional nature of financial institutions at the time, as they communicated power, stability and strength. The design of the tower echoes the Royal Bank's Montreal headquarters, which had just been completed and features a similar base with arched windows, along with a classical composition. Typical of the conservation displayed by banks, the dynamic Art Deco massing of the building has been disguised with historical motifs, so as to avoid the appearance of excessively modernism. Neo-Romanesque motifs have been used throughout, blended with classical details. Davenport successfully resolved a rational design response that expressed the progressive look of a modern skyscraper, clothed with sufficient historical detail to ensure respectability. This reflects the unfolding development of the skyscraper form, described at the time as "perpendicular" or "invisible" Gothic, reflecting the influence of New York's 1916 setback laws as well as Emil Seifert's seminal blend of Gothic verticality and modernist detailing in his 1922 Chicago Tribune competition entry.

The Royal Bank Tower is valued for its commission and continuous occupancy by the Royal Bank of Canada. The building replaced the bank's former British Columbia headquarters at 400 West Hastings Street, demonstrating the company's desire to project a dominant and secure corporate image. The Royal Bank, which had emerged in the 1920s as Canada's largest bank, was first among its peers in Vancouver to express its power through the construction of a skyscraper. The bank's regional offices were located in the tower for more than four decades, until they moved to the new Royal Centre development in 1973. The Royal Bank branch on the main and lower floors of the tower has remained in place since opening in 1931 and represents the company's enduring relationship with the site.

The Royal Bank Tower is significant for its modernistic skyscraper design by S.G. Davenport, chief architect for the Royal Bank of Canada from 1930 until 1942. The tower echoes the traditional nature of financial institutions at the time, as they communicated power, stability and strength. The design of the tower echoes the Royal Bank's Montreal headquarters, which had just been completed and features a similar base with arched windows, along with a classical composition. Typical of the conservation displayed by banks, the dynamic Art Deco massing of the building has been disguised with historical motifs, so as to avoid the appearance of excessively modernism. Neo-Romanesque motifs have been used throughout, blended with classical details. Davenport successfully resolved a rational design response that expressed the progressive look of a modern skyscraper, clothed with sufficient historical detail to ensure respectability. This reflects the unfolding development of the skyscraper form, described at the time as "perpendicular" or "invisible" Gothic, reflecting the influence of New York's 1916 setback laws as well as Emil Seifert's seminal blend of Gothic verticality and modernist detailing in his 1922 Chicago Tribune competition entry.

The tower is also valued for its association with consulting engineers, Purdy & Henderson. Corydon Purdy and Lightner Henderson first opened an engineering office in Chicago in the early 1890s, but soon transferred the headquarters of their practice to New York. They opened branch offices in various locations, including Havana, Cuba, where the Royal Bank commissioned the firm to oversee the expansion of bank facilities in the West Indies. By this time, architect S.G. Davenport had joined Purdy & Henderson and was sent there to supervise the construction of several projects, including the Royal Bank's head office in Havana (1917). This convergence firmly established the working relationship that would later complete work on the Royal Bank Tower in Vancouver. Purdy's involvement in the design of skyscrapers was known to be more extensive than anyone else during his storied career. He is also credited with establishing the role of the consulting engineer as a critical team member in skyscraper construction projects.

Royal Bank selected the Vancouver-based contracting firm of Carter-Halls-Aldinger to oversee construction. The firm's other notable commissions included Vancouver City Hall, the Medical-Dental Building and a wing of the Empress Hotel in Victoria. Approximately 90% of the materials for the tower were sourced within the province, including the cut stone cladding from Haddington Island. This landmark project, undertaken at a time when other major projects faltered, signalled the bank's determination to weather the storm of the Great Depression.

Character-Defining Elements
The elements that define the heritage character of the Royal Bank Tower are its: location at the intersection of West Hastings and Granville Streets in downtown Vancouver; continuous association with the Royal Bank since 1931; commercial form, scale and massing as expressed by its eighteen-storey height, plus lower levels, that steps back as it rises in a series of setbacks, general symmetry; two-storey, campanile-like elevator penthouse; central banking hall entry and secondary office entry; and flat roofs; steel-framework construction, with cladding of Haddington Island andesite; modernistic skyscraper design, including a balance of strongly articulated horizontal and vertical elements; monumental base level with round-arched double-height windows and a grand arched banking hall entry; round-arched window openings at the termination of the setbacks; and neo-Romanesque embellishments at arched edges, spandrels and balustrades; variety of original steel windows and surviving original mahogany double-hung, multi-paned wooden-sash windows; and additional features such as the cast metal lights at the office entry.

STATEMENT OF SIGNIFICANCE

ROYAL BANK TOWER: 675 WEST HASTINGS STREET, VANCOUVER, BC

CONSERVATION PLAN | JUNE 2016

675 West Hastings Conservation Plan

App. 8
4.0 CONSERVATION GUIDELINES

4.1 STANDARDS AND GUIDELINES

The Royal Bank Tower is an “A” listed building on the municipal Heritage Register, and is a significant historical resource in the City of Vancouver. The Parks Canada Standards and Guidelines for the Conservation of Historic Places in Canada is the source used to assess the appropriate level of conservation and intervention. Under the Standards and Guidelines, the work proposed for the Royal Bank Tower includes aspects of preservation & rehabilitation.

Preservation: the action or process of protecting, maintaining, and/or stabilizing the existing materials, form, and integrity of a historic place or of an individual component, while protecting its heritage value.

Restoration: the action or process of accurately revealing, recovering or representing the state of a historic place or of an individual component, as it appeared at a particular period in its history, while protecting its heritage value.

Rehabilitation: the action or process of making possible a continuing or compatible contemporary use of a historic place or of an individual component, through repair, alteration, and/or additions, while protecting its heritage value.

Interventions to the historic buildings should be based upon the Standards outlined in the Standards and Guidelines, which are conservation principles of best practice. The following General Standards should be followed when carrying out any work to an historic property.

STANDARDS

Standards relating to all Conservation Projects

1. Preserve the heritage value of a historic place. Do not remove, replace, or substantially alter its intact or repairable character-defining elements. Do not move a part of a historic place if its current location is a character-defining element.

2. Conserve changes to a historic place, which over time, have become character-defining elements in their own right.

3. Conserve heritage value by adopting an approach calling for minimal intervention.

4. Recognize each historic place as a physical record of its time, place and use. Do not create a false sense of historical development by adding elements from other historic places or other properties or by combining features of the same property that never existed.

5. Find a use for a historic place that requires minimal or no change to its character defining elements.

6. Protect and, if necessary, stabilize a historic place until any subsequent intervention is undertaken. Protect and preserve archeological resources in place. Where there is potential for disturbance of archeological resources, take mitigation measures to limit damage and loss of information.

7. Evaluate the existing condition of character-defining elements to determine the appropriate intervention needed. Use the gentlest means possible for any intervention. Respect heritage value when undertaking an intervention.

8. Maintain character-defining elements on an ongoing basis. Repair character-defining element by reinforcing the materials using recognized conservation methods. Replace in kind any extensively deteriorated or missing parts of character-defining elements, where there are surviving prototypes.

9. Make any intervention needed to preserve character-defining elements physically and visually compatible with the historic place and identifiable upon close inspection. Document any intervention for future reference.

Additional Standards relating to Rehabilitation

10. Repair rather than replace character-defining elements. Where character-defining elements are too severely deteriorated to repair, and where sufficient physical evidence exists, replace them with new elements that match the forms, materials and detailing of sound versions of the same elements. When there is insufficient physical evidence, make the form, material and detailing of the new elements compatible with the character of the historic place.

11. Conserve the heritage value and character-defining elements when creating any new additions to a historic place and any related new construction. Make the new work physically and visually compatible with, subordinate to and distinguishable from the historic place.

12. Create any new additions or related new construction so that the essential form and integrity of a historic place will not be impaired if the new work is removed in the future.

Additional Standards relating to Restoration

13. Repair rather than replace character-defining elements from the restoration period. Where character-defining elements are too severely deteriorated to repair and where sufficient physical evidence exists, replace them with new elements that match the forms, materials and detailing of sound versions of the same elements.

14. Replace missing features from the restoration period with new features whose forms, materials and detailing are based on sufficient physical, documentary and/or oral evidence.

4.2 CONSERVATION REFERENCES

The proposed work entails the Preservation & Rehabilitation of the historic façades of the Royal Bank Tower. The following conservation resources should be referred to:

Standards and Guidelines for the Conservation of Historic Places in Canada, Parks Canada

National Park Service, Technical Preservation Services, Preservation Briefs:
http://www.nps.gov/tps/how-to-preserve/briefs/1-assessing-water-repellent.htm

http://www.nps.gov/tps/how-to-preserve/briefs/2-repoint-mortar-joints.htm

Preservation Brief 6: Dangers of Abrasive Cleaning to Historic Buildings.
http://www.nps.gov/tps/how-to-preserve/briefs/6-dangers-abrasive-cleaning.htm

http://www.nps.gov/tps/how-to-preserve/briefs/14-exterior-additions.htm

http://www.nps.gov/tps/how-to-preserve/briefs/27-cast-iron.htm

http://www.nps.gov/tps/how-to-preserve/briefs/41-seismic-retrofit.htm
4.3 GENERAL CONSERVATION STRATEGY

The primary intent involves the preservation and rehabilitation of the character-defining elements along the West, South, and North Elevations, and the rehabilitation of the East Elevation by physically attaching the historic building to a new building. The new addition will incorporate the existing masonry wall as an interior wall that would face an inner courtyard. This would also allow for the seismic upgrade of the historic building as part of the new construction.

The major proposed interventions of the overall project are:

- Retain the historic front façades along Granville Street, West Hastings Street, and the laneway façade.
- Preserve and restore character-defining elements on the front façade.
- Provide seismic upgrading of the historic building by physically attaching it to the new construction along the east elevation.

Due to the nature of the proposed design, all new visible construction will be considered a modern addition to the historic structure. The Standards and Guidelines list recommendations for new additions to historic places. The proposed design visible above the current façade should follow these principles:

- Designing a new addition in a manner that draws a clear distinction between what is historic and what is new.
- Design for the new work may be contemporary or may reference design motifs from the historic place. In either case, it should be compatible in terms of mass, materials, relationship of solids to voids, and colour, yet be distinguishable from the historic place.
- The new additions are physically and visually compatible with, subordinate to and distinguishable from the preserved historic façade.

4.4 SUSTAINABILITY STRATEGY

Heritage conservation and sustainable development can go hand in hand with the mutual effort of all stakeholders. In a practical context, the conservation and re-use of historic and existing structures contributes to environmental sustainability by reducing solid waste disposal, saving embodied energy, and conserving historic materials that are often less consumptive of energy than many new replacement materials.

In 2016, the Federal Provincial Territorial Ministers of Culture & Heritage in Canada (FPTMCHC) published a document entitled, Building Resilience: Practical Guidelines for the Retrofit and Rehabilitation of Buildings in Canada that is “intended to establish a common pan-Canadian ‘how-to’ approach for practitioners, professionals, building owners, and operators alike.”

The following is an excerpt from the introduction of the document:

Building Resilience is intended to serve as a “sustainable building toolkit” that will enhance understanding of the environmental benefits of heritage conservation and of the strong interrelationship between natural and built heritage conservation. Intended as a useful set of best practices, the guidelines in Building Resilience can be applied to existing and traditionally constructed buildings as well as formally recognized heritage places.

4.5 ALTERNATE COMPLIANCE

The Royal Bank Tower may be eligible for heritage variances that will enable a higher degree of heritage conservation and retention of original material, including considerations available under the municipal legislation.

Building Code upgrading is the most important aspect of heritage building rehabilitation, as it ensures life safety and long-term protection for the resource. It is essential to consider heritage buildings on a case-by-case basis, as the blanket application of Code requirements does not recognize the individual requirements and inherent performance strengths of each building. Given that Code compliance is such a significant factor in the conservation of heritage buildings, the most important consideration is to provide viable economic methods of achieving building upgrades.

This is recognized in the 2014 Vancouver Building By-law, which aims to conserve heritage buildings while maintaining an acceptable level of safety and building performance. The new VBBL outlines in Section 11.5 Alternative Acceptable Solutions for Heritage Buildings the code requirements for the restoration and rehabilitation of heritage buildings. The alternate compliance method balances current building by-law provisions with existing conditions such as exiting, windows, doors, spatial separation, door swing, hardware, etc.

For example, historic windows and doors that are being replaced, repaired or replicated have to achieve an acceptable level of performance and do not have to comply with “NAFS – North American Fenestration Standard Specification for Windows, Doors, and Skylights.” The alternative acceptable solutions in Section 11.5 provide detailed information about code requirements for heritage buildings. In addition to the equivalencies offered under the VBBL, the City can also accept the report of a Building Code Engineer as to acceptable levels of code performance.
5.0 CONSERVATION RECOMMENDATIONS

A condition review of the exterior of the Royal Bank Tower was carried out during a site visit in May 2016. The recommendations for the conservation and rehabilitation of the historic façades are based on the site review and archival documents that provide valuable information about the original appearance of the historic building.

The following chapter describes the materials, physical condition and recommended conservation strategy for the Royal Bank Tower based on Parks Canada’s Standard and Guidelines for the Conservation of Historic Places in Canada.

5.1 SITE

The Royal Bank Tower is located at the northeast corner of West Hastings and Granville Streets. It was built to the front and side property lines.

As part of the proposed development scheme, the Royal Bank Tower will be retained in situ. All heritage resources within the site should be protected from damage or destruction at all times. A new building is proposed to connect directly to the east of the historic building.

The proposed rehabilitation work will provide structural and seismic upgrades, designed to preserve and protect the character-defining elements of the historic building.

Conservation Recommendation: Preservation
- Preserve the original location of the building.
- Retain the historic street façades of the Royal Bank Tower in situ along Granville Street, West Hastings Street, and the laneway façade.

5.2 FORM, SCALE AND MASSING

The overall form, scale and massing of the Royal Bank Tower is a character-defining element of the historic building. It is an eighteen-storey Neo-Romanesque building with a massing that deviates from the traditional and more prevalent ‘temple bank’ style.

The three-storey base of the historic building is characterized with a double-storey banking hall and an entablature, upon which seven more stories protrude directly above at the north, west, and south elevations. The historic front façade along East Hastings Street is divided into three bays, with the central bay having twice the width of the other bays to the east and the west. It is also characterized by a central symmetry that continues up to the tenth storey, where the building begins to steps asymmetrically to the east, with the campanile-like elevator penthouse being the tallest point of the building. Along the east elevation, the building steps back above the entablature to provide daylighting of interior spaces at the upper levels.

The current proposal includes the preservation of the overall form, scale, and massing of the building, while incorporating a physical connection to a new building from the east elevation. The proposed height and massing of the new building is complementary to the original appearance of the historic façade as viewed from the street.

Conservation Recommendation: Preservation
- No alteration to the overall form, scale, or massing is proposed, with the exception of a physical connection to the new building from the east elevation.

5.3 EXTERIOR WALLS

The Royal Bank Tower features original Haddington Island andesite stone cladding and honed granodiorite base along the street elevations to the west (Granville Street) and the south (West Hastings Street), as well as the north elevation along the laneway. The secondary wall at east elevation are built of more modest buff brick.
5.3.1 ANDESITE

Andesite is a volcanic stone with a high content of silica (70%) and approximately 20% alumina and ferric oxide. Haddington Island has been an important source of dimension stone in British Columbia for over a century. Because of its durability and ability to be cut and carved, andesite is a popular choice for exterior wall cladding of high-status buildings. Some notable buildings include: the Provincial Parliament Buildings in Victoria; the Provincial Court House (now the Vancouver Art Gallery); Hotel Vancouver; Somervell and Putnam Merchants’ Bank on Pender and Granville (now the Segal Graduate School of Business); and the Merchants’ Bank on 1 West Hastings.

The principal entrance along West Hastings Street features a double-height portico archway of carved andesite. It is ornate with Neo-Romanesque motifs, and is flanked with alternating engaged stone pilasters and columns that corbel interiorly. The secondary entrance on the same elevation features a more modest rectilinear carved stone surround.

The existing stonework is unpainted. Along the west and the south elevation, the stone is generally in good condition. There are visible deterioration in localized areas, notably on horizontal projections. This includes: minor natural weathering, particularly on stonework detailing; various degrees of detachment; stone loss due to water saturation; and some areas of biological growth. Furthermore, pronounced cracking and bursting were noted in several areas at the corner of the building, indicating water penetration that could lead to corrosion of internal steel structure.

Due to minimal sun exposure at the north elevation, the stonework detailing shows the most visible deterioration, indicative of water saturation due to faulty flashing or lack thereof.

Conservation Recommendation: Preservation & Restoration

- Arrest the cause of water saturation by installing flashing, as required.
- Allow some time for masonry to dry prior to the main conservation project. It will take at least a year or two for the areas of worst exterior water damage to dry out. There is no short-term solution, but actions can be taken to accelerate and reduce the process:
 - do not seal the stone; allow it to dry out and evaporate
 - apply a poultice to draw-out the moisture and staining, such as Stand Off Poultice Powder (by ProSoCo) or Sure Klean Marble Poultice (by ProSoCo)
 - as the masonry dries, salts from within the stone will deposit on the surface of the masonry (efflorescence). Remove salts by brushing.
- Lightly clean the andesite. Under no circumstances should abrasive cleaning, of any description, be used. Apply a light pressure wash (maximum 750psi) and brush. If necessary, use a chemical-based wash that is suitable for the stone. It should not contain hydrochloric acid or hydrofluoric acid.
- Repoint thin ashlar joints, only where absolutely necessary, to prevent water ingress. The joints are so fine, that often repairs are more damaging than beneficial.
- Prior to repairs, the stonework should be further assessed and scope of work agreed upon with the Architect/Heritage Consultant.

5.3.2 GRANODIORITE BASE

The base of the building, including the principal entrance stairs and thresholds along West Hastings Street are constructed by a durable stone called granodiorite, and are in good condition.

Conservation Recommendation: Preservation

- Abrasive cleaning may be necessary, but not for andesite.

Detail photo showing delicate carvings of the archway entrance of the double-storey portico along West Hastings Street.

Detail photo showing delicate carvings of the archway entrance of the double-storey portico along West Hastings Street.
• Cleaning, repair, and repointing specifications to be reviewed by Heritage Consultant.
• Preserve the masonry on the historic facade elevation of the building, and repair only as necessary.
• Repoint masonry only as necessary.

5.3.3 BUFF BRICK

The side masonry walls of the Royal Bank Tower were built to the property line. In general, the buff bricks appear to be in good condition, with minor signs of deterioration in localized areas such as spalling, biological growth, and efflorescence, notably where flashing terminates at wall returns.

The current proposal includes the rehabilitation of the buff brick wall at east elevation to allow for the new building to be physically connected to the historic building, which would also provide structural reinforcement and seismic upgrading. The new building will incorporate the masonry wall as an interior wall that would face a new inner courtyard.

Conservation Recommendation: Rehabilitation

• The new building will incorporate structural reinforcement and seismic upgrading of the historic building.
5.3.4 PARAPETS

The parapets of the Royal Bank Tower on the 17th floor level (roof top) are characterized by handsome stonework detailing that shows signs of deterioration in localized areas, particularly in the form of biological growth and delamination. Although metal cap flashings are installed above the parapets that wrap along the parapet wall internally, the existing condition of the carved stonework from the exterior side indicates issues of water saturation. The current proposal includes the rehabilitation of the parapet to provide structural reinforcement and seismic upgrading.

Conservation Recommendation: Preservation, Restoration, & Rehabilitation
- The new building will incorporate structural reinforcement and seismic upgrading of the historic building.
- Refer to conservation recommendations for andesite on page 22.

5.3.5 BALUSTRADES

The upper balconies of the Royal Bank Tower on the 8th, 9th, and 14th floor levels are characterized by a series of stone balustrades. Unlike the parapet, they do not appear to have metal cap flashing installed on top of the stone caps. In general, the balusters appear to be in good condition. The stone caps and interior return of each arched openings of the balusters show signs of deterioration in the form of biological growth and varying degrees of delamination, all of which indicate issues of water saturation. The current proposal includes the rehabilitation of the balustrades to provide structural reinforcement and seismic upgrading.

Conservation Recommendation: Preservation, Restoration, & Rehabilitation
- The new building will incorporate structural reinforcement and seismic upgrading of the historic building.
- Refer to conservation recommendations for andesite on page 22.
5.4 FENESTRATION

Windows, doors and storefronts are among the most conspicuous feature of any building. In addition to their function — providing light, views, fresh air and access to the building — their arrangement and design is fundamental to the building’s appearance and heritage value. Each element of fenestration is, in itself, a complex assembly whose function and operation must be considered as part of its conservation. – Standard and Guidelines for the Conservation of Historic Places in Canada.

5.4.1 WINDOWS

Most of the exterior windows have been replaced with new aluminum double-hung windows and double-glazing units that do not have true divided lights. However, original wood window frames are still extant in all elevations of the building. Original window assemblies are also extant on the base of the building, which include a variety of original steel windows, and mahogany double-hung, multi-paned wooden sash windows with true-divided lights. The east elevation along Granville Street features an arcade of six large semi-circular steel windows that appear to have original window assemblies, with textured, opaque, yellow-tinted glazing.

Below the stone skirt of the podium are fixed, multi-pane steel windows with similar textured, opaque, yellow-tinted glazing. All of them are recessed from the sidewalk behind decorative metal grilles painted in black.

Some of the windows have missing glass panes as a result of installing an external air conditioning unit, or ventilation grilles. Most of the original window frames are typically painted on the exterior, and are in excellent condition, with minimum amount of repairs necessary.
Conservation Recommendation: Preservation & Rehabilitation

The best form of conservation is minimal intervention. Unless a window is irreparable, it is not necessary to dismantle and overhaul.

- Preserve the front façade windows in their original configuration.
- Retain existing glazing. Protect historic glass in situ during construction work.
- Inspect for condition and complete detailed inventory to determine extent of recommended repair or replacement.
- Retain existing window sashes; repair as required; install replacement matching sashes where missing or beyond repair.
- Preserve and repair as required, using in kind repair techniques where feasible.
- Overhaul, tighten/replace joints. Repair frames, trim and operating mechanisms.
- Each window should be made weather tight by re-puttying and weather-stripping, as necessary.
- Use only approved restoration mortar to build up the sills to their original profile. New material should be visually compatible with existing painted sills. Heritage Consultant may provide product recommendation, if required.
- Prime and repaint as required in appropriate colour, based on colour schedule devised by Heritage Consultant.

5.4.2 DOORS

The historic building have two entrances along West Hastings Street, and one contemporary entrance to the enclosed ATM along Granville Street. All of the entrances feature contemporary doors that are not contributing to its historic character.

Conservation Recommendation: None

5.5 ARCHITECTURAL METAL WORKS

Large metal window grilles are present on the north and west elevation (along the laneway and Granville Street, respectively). They are painted and generally, in good condition. Four cast metal lamps are fastened onto the historic front facade along West Hastings Street. Metal cap flashing is also installed along the parapet of the masonry walls on all elevations. Further investigation is required to determine the condition of the parapet and cap flashing prior to rehabilitation.

Conservation Strategy: Rehabilitation

- Restore metal window grilles, and repair as necessary.
- Preserve metal wall light fixtures, and repair as necessary.

Conservation Recommendation: None

5.6 COLOUR SCHEDULE

Part of the Restoration process is to finish the building in historically appropriate paint colours. A restoration colour scheme will be developed in conjunction with the project architect.

The building displays areas where there was original applied paint. The final colour scheme will be based on a colour palette that will be determined by sampling. Onsite testing will be carried out once access is available, and paint samples assessed by microscopic analysis in order to reveal the original colour scheme of the structure.

Conservation Recommendation: Restoration

- Determine an appropriate historic colour scheme for exterior painted finishes.
- Ensure appropriate primer is utilized for galvanized metal surfaces.
A Maintenance Plan should be adopted by the property owner, who is responsible for the long-term protection of the heritage features of the Royal Bank Tower. The Maintenance Plan should include provisions for:

- Copies of the Maintenance Plan and this Conservation Report to be incorporated into the terms of reference for the management and maintenance contract for the building;
- Cyclical maintenance procedures to be adopted as outlined below;
- Record drawings and photos of the building to be kept by the management/maintenance contractor; and
- Records of all maintenance procedures to be kept by the owner.

A thorough maintenance plan will ensure the integrity of the rehabilitated historic building is preserved. If existing materials are regularly maintained and deterioration is significantly reduced or prevented, the integrity of materials and workmanship of the building will be protected. Proper maintenance is the most cost effective method of extending the life of a building, and preserving its historic elements. The survival of historic buildings in good condition is primarily due to regular upkeep and the preservation of historic materials.

6.1 MAINTENANCE GUIDELINES

A maintenance schedule should be formulated that adheres to the Standards and Guidelines for the Conservation of Historic Places in Canada. As defined by the Standards and Guidelines, maintenance is defined as:

Routine, cyclical, non-destructive actions necessary to slow the deterioration of a historic place. It entails periodic inspection; routine, cyclical, non-destructive cleaning; minor repair and refinishing operations; replacement of damaged or deteriorated materials that are impractical to save.

This can be accomplished with warm water, mild detergent and a soft bristle brush. High-pressure washing, sandblasting or other abrasive cleaning should not be undertaken under any circumstances.

6.2 PERMITTING

Repair activities, such as simple in-kind repair of materials, or repainting in the same colour, should be exempt from requiring city permits. Other more intensive activities will require the issuance of a Heritage Alteration Permit.

6.3 ROUTINE, CYCLICAL AND NON-DESTRUCTIVE CLEANING

Following the Standards and Guidelines for the Conservation of Historic Places in Canada, be mindful of the principle that recommends “using the gentler means possible”. Any cleaning procedures should be undertaken on a routine basis and should be undertaken with non-destructive methods. Cleaning should be limited to the exterior material such as brick wall surfaces and wood elements such as storefront frames. All of these elements are usually easily cleaned, simply with a soft, natural bristle brush, without water, to remove dirt and other material. If a more intensive cleaning is required, this should be undertaken with non-destructive methods. Cleaning should be limited to the exterior material such as brick wall surfaces and wood elements such as storefront frames. All of these elements are usually easily cleaned, simply with a soft, natural bristle brush, without water, to remove dirt and other material. If a more intensive cleaning is required, this can be accomplished with warm water, mild detergent and a soft bristle brush. High-pressure washing, sandblasting or other abrasive cleaning should not be undertaken under any circumstances.

6.4 REPAIRS AND REPLACEMENT OF DETERIORATED MATERIALS

Interventions such as repairs and replacements must conform to the Standards and Guidelines for the Conservation of Historic Places in Canada. The building’s character-defining elements – characteristics of the building that contribute to its heritage value (and identified in the Statement of Significance) such as materials, form, configuration, etc. – must be conserved, referencing the following principles and guide interventions:

- An approach of minimal intervention must be adopted – where intervention is carried out it will be by the least intrusive and most gentle means possible.
- Repair rather than replace character-defining elements.
- Repair character-defining elements using recognized conservation methods.
- Replace “in kind” extensively deteriorated or missing parts of character-defining elements.
- Make interventions physically and visually compatible with the historic place.

6.5 INSPECTIONS

Inspections are a key element in the maintenance plan, and should be carried out by a qualified person or firm, preferably with experience in the assessment of heritage buildings. These inspections should be conducted on a regular and timely schedule. The inspection should address all aspects of the building including exterior, interior and site conditions. It makes good sense to inspect a building in wet weather, as well as in dry, in order to see how water runs off – or through – a building.

From this inspection, an inspection report should be compiled that will include notes, sketches and observations. It is helpful for the inspector to have copies of the building’s elevation drawings on which to mark areas of concern such as cracks, staining and rot. These observations can then be included in the report. The report need not be overly complicated or formal, but must be thorough, clear and concise. Issues of concern, taken from the report should then be entered in a log book so that corrective action can be documented and tracked. Major issues of concern should be extracted from the report by the property manager.

An appropriate schedule for regular, periodic inspections would be twice a year, preferably during spring and fall. The spring inspection should focus on seasonal issues such as weather-sealants, mechanical (heating) systems and drainage issues. Comprehensive inspections should occur at five-year periods, comparing records from previous inspections and the original work, particularly in monitoring structural movement and durability of utilities. Inspections should also occur after major storms.

6.6 INFORMATION FILE

The historic building should have its own information file where an inspection report can be filed. This file should also contain the log book that itemizes problems and corrective action. Additionally, this file should contain building plans, building permits, heritage reports, photographs and other relevant documentation so that a complete understanding of the building and its evolution is readily available, which will aid in determining appropriate interventions when needed.
6.7 EXTERIOR MAINTENANCE

Water, in all its forms and sources (rain, snow, frost, rising ground water, leaking pipes, back-splash, etc.) is the single most damaging element to historic buildings.

The most common place for water to enter a building is through the roof. Keeping roofs repaired or renewed is the most cost-effective maintenance option. Evidence of a small interior leak should be viewed as a warning for a much larger and worsening water damage problem elsewhere and should be fixed immediately.

6.7.1 INSPECTION CHECKLIST

The following checklist considers a wide range of potential problems specific to the Royal Bank Tower, such as water/moisture penetration, material deterioration and structural deterioration. This does not include interior inspections.

EXTERIOR INSPECTION

Site Inspection
☐ Is the lot well drained? Is there pooling of water? Does water drain away from foundation?
☐ Is there pooling of water in adjacent alleyway that may the building?

Foundation
☐ Moisture: Is rising damp present?
☐ Is there back splashing from ground to structure? Is any moisture problem general or local?
☐ Is spalling from freezing present? (ifakes or poolsed)? Is efflorescence present?
☐ Is spalling from sub-efflorescence present? Is damp proof course present?
☐ Are there shrinkage cracks in the foundation?
☐ Are there movement cracks in the foundation?
☐ Is crack monitoring required?
☐ Is uneven foundation settlement evident?

Windows
☐ Is there glass cracked or missing?
☐ If the glazing is buttressed, is the glass in good condition? Are storm doors in proper working order?
☐ Are all glazing putty need repair? Are door frames wicking up water? Where? Why?
☐ Are there blisters or slits in the membrane?
☐ Are the sashes easy to operate? If hinged, do they swing freely? Is the frame free from distortion?
☐ Are there blisters or slits in the membrane?
☐ Are the sashes easy to operate? If hinged, do they swing freely? Is the frame free from distortion?
☐ Are there cracks due to shrinking and expansion?
☐ Are there cracks due to structural movement?
☐ Are there unexplained cracks?
☐ Do cracks require continued monitoring? Are there signs of steel or iron corrosion?
☐ Are there stains present? Rust, copper, organic, paints, oils / tar? Cause? Does the surface need cleaning?

Masonry
☐ Are moisture problems present? (Rising damp, rain penetration, condensation, water run-off from roof, sills, or ledges?) Is efflorescence from freezing present? Location?
☐ Are there water blockage points?
☐ Do there cracks due to shrinking and expansion?
☐ Are there cracks due to structural movement?
☐ Are there unexplained cracks?
☐ Do cracks require continued monitoring? Are there signs of steel or iron corrosion?
☐ Are there stains present? Rust, copper, organic, paints, oils / tar? Cause? Does the surface need cleaning?

Condition of Exterior Painter Materials
☐ Paint shows: blistersing, sagging or wrinkling, alligatoring, peeling. Cause?
☐ Paint has the following stains: rust, bleeding knots, mildew, etc. Cause?
☐ Paint cleanliness, especially at air vents?

Doors
☐ Do the doors create a good seal when closed?
☐ Do doors show signs of corrosion?
☐ Is there evidence of biological attack? (Fungi, moss, birds, insects) Are flashings well sealed?
☐ Are the sashes easy to operate? If hinged, do they swing freely? Is the frame free from distortion?
☐ Do all glazing putty need repair? Are door frames wicking up water? Where? Why?
☐ Are doors caulked at the cladding? Are the sashes easy to operate? If hinged, do they swing freely? Is the frame free from distortion?

Roof
☐ Is there rubbish buildup on the roof?
☐ Are the pipes plugged or standing proud?
☐ Are metal joints and seams sound?
☐ Is the roof well drained?
☐ Is there evidence of biological attack? (Fungi, moss, birds, insects) Are flashings well sealed?
☐ Are there blisters or slits in the membrane?
☐ Are the sashes easy to operate? If hinged, do they swing freely? Is the frame free from distortion?
☐ Do all glazing putty need repair? Are door frames wicking up water? Where? Why?
☐ Are there cracks due to shrinking and expansion?
☐ Are there cracks due to structural movement?
☐ Are there unexplained cracks?
☐ Do cracks require continued monitoring? Are there signs of steel or iron corrosion?
☐ Are there stains present? Rust, copper, organic, paints, oils / tar? Cause? Does the surface need cleaning?

6.7.2 MAINTENANCE PROGRAMME INSPECTION CYCLE

Daily
• Observations noted during cleaning (cracks, damp, dripping pipes, malfunctioning hardware; etc.) to be noted in log book or building file.

Semi-annually
• Semi-annual inspection and report with special focus on seasonal issues.
• Thorough cleaning of drainage system to cope with winter rains and summer storms
• Check condition of weather seals (Fall).
• Clean the exterior using a soft bristle broom/brush.
APPENDIX A: RESEARCH SUMMARY

RESEARCH SUMMARY – 675 WEST HASTINGS STREET

- City of Vancouver Archives (CVA)
- Vancouver Public Library (VPL)
- Building the West: The Early Architects of British Columbia (Second Edition). Luxton, Donald (Ed.).
 Vancouver: Talonbooks. 2007.
 http://www.dictionaryofarchitectsincanada.org
- Vancouver Sun, January 25 and January 30, 1930
 www.cenews.com
- Pacific Coast Architecture Database. Michelson, Alan (Ed.). www.digital.lib.wash.edu

MAINTENANCE PLAN

Annually (Spring)
- Inspect concrete and masonry for cracks, deterioration.
- Inspect metal elements, especially in areas that may trap water.
- Inspect windows for paint and glazing compound failure, corrosion and wood decay and proper operation.
- Complete annual inspection and report.
- Clean out of all perimeter drains and rainwater systems.
- Touch up worn paint on the building’s exterior.
- Check for plant, insect or animal infestation.
- Routine cleaning, as required.

Five-Year Cycle
- A full inspection report should be undertaken every five years comparing records from previous inspections and the original work, particularly monitoring structural movement and durability of utilities.
- Repaint windows every five to fifteen years.

Ten-Year Cycle
- Check condition of roof every ten years after last replacement.

Twenty-Year Cycle
- Confirm condition of roof and estimate effective lifespan. Replace when required.

Major Maintenance Work (as required)
- Thorough repainting, downspout and drain replacement; replacement of deteriorated building materials; etc.